

Definition of enzyme

- Enzymes are biological catalysts.
- A Catalyst is defined as "a substance that increases the rate

of a chemical reaction without being itself changed in the process."

Enzymes as Biological Catalysts

- Enzymes are proteins that increase the rate of reaction by lowering the energy of activation
- They catalyze nearly all the chemical reactions taking place in the cells of the body
- Enzymes have unique three-dimensional shapes that fit the shapes of reactants (substrates)

Timberlake, General, Organic, and Biological Chemistry. Copyright © Pearson Education Inc., publishing as Benjamin Cummings

2. Properties of enzymes (important!)

- Catalytic efficiency <u>high efficiency</u>, 10³ to 10¹⁷ faster than the corresponding uncatalyzed reactions
- Specificity <u>high specificity</u>, interacting with one or a few specific substrates and catalyzing only one type of chemical reaction.
- Mild reaction conditions- 37°C, physiological pH, ambient atmospheric pressure

3. Chemical composition of enzymes

(1) Simple protein(2) Conjugated protein

Holoenzyme= Apoenzyme+ Cofactor

4. Classification of enzymes

- (1). By their composition
 - 1). Monomeric enzyme
- 2). Oligomeric enzyme

3). Multienzyme complex: such as Fatty acid synthase

(2) Nomenclature

Recommended name

•Enzymes are usually named according to the reaction they carry out.

•To generate the name of an enzyme, the suffix -ase is added to <u>the name of its</u> <u>substrate</u> (e.g., lactase is the enzyme that cleaves lactose) or <u>the type of</u> <u>reaction</u> (e.g., DNA polymerase forms DNA polymers).

•Systematic name (International classification) • By the reactions they catalyze (Six classes)

5. How enzymes work (important!)

- 1) Enzymes lower a reaction's activation energy
 - All chemical reactions have <u>an energy barrier</u>, called the activation energy, separating the reactants and the products.
 - activation energy:
 amount of energy
 needed to disrupt stable
 molecule so that
 reaction can take place.

Copyright 6-9001 Benjamin Currenings, an injoint of Addison Wesley Longstan, no

What is the difference between an enzyme and a protein?

•All enzymes are proteins except some RNAs

not all proteins are enzymes

2) The active site of the enzyme

- Enzymes bind substrates to their active site and stabilize the transition state of the reaction.
- The active site of the enzyme is the place where the substrate binds and at which catalysis occurs.
- The active site binds the substrate, forming an enzyme-substrate(ES) complex.

Enzymatic reaction steps

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

- 1. Substrate approaches active site
- 2. Enzyme-substrate complex forms
- 3. Substrate transformed into products
- 4. Products released
- 5. Enzyme recycled

6. Enzyme activity

- Enzymes are never expressed in terms of their concentration (as mg or μg etc.), but are expressed only as activities.
- Enzyme activity = moles of substrate converted to product per unit time.
 - The rate of appearance of product or the rate of disappearance of substrate
 - Test the absorbance: spectrophotometer

7. Factors affecting enzyme activity

- Concentration of substrate
- Concentration of enzyme
- Temperature
- pH
- Activators
- Inhibitors

Enzymes in clinical diagnosis

 An enzyme test is a blood test or urine test that measures levels of certain enzymes to assess how well the body's systems are functioning and whether there has been any tissue damage. (why?)

- Common enzymes used for clinical diagnosis include:
 - alanine aminotransferase(ALT, also called glutamate pyruvate transaminase, GPT)
 - alkaline phosphatase
 - amylase
 - aspartate aminotransferase
 - creatine kinase
 - lactate dehydrogenase